
Coordination number of disordered packings of identical spheres

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 2119

(http://iopscience.iop.org/0305-4470/22/12/015)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) 2119-2131. Printed in the UK 

Coordination number of disordered packings of 
identical spheres 

A Gervoist, M Lichtenberg$§, L OgerJ: and E Guyon$ 
t CEN Saclay, Service de Physique Thtorique, 91191 Cif-sur-Yvette cedex, France 
$ PMH, URA 857 au CNRS, ESPCI, 10, Rue Vauquelin, 75231 Paris cedex 05, France 
5 IBM, Tour Septentrion, 92066 Paris la Dtfense, France 

Received 30 January 1989 

Abstract. We determine the coordination number in ordered and disordered packings of 
monosize spheres, following a first treatment given by Elizabeth Gardner. The average 
number of contacts per unit volume is derived from the slope at the origin of the distribution 
law for the separators obtained by passing a random line across the assembly of spheres. 
Moreover, this law may be completely calculated and is universal up to a multiplicative 
constant. We have performed tests on numerical ordered and disordered assemblies of 
spheres and obtained the complete distribution function for the separators. We discuss 
the difference between the theoretical-biparticle and stereological approaches and discuss 
how the study of the pair correlation function analysis may extend the present treatment. 

1. Introduction 

Most transport properties of granular media depend on the geometry. The application 
of stereology based on the study of random cuts of such media provides statistical 
information on the packing such as its porosity, interfacial area per unit volume and 
so on, provided certain properties such as isotropy and homogeneity are met [l]. 
Unfortunately, no similar result exists in general for the coordination number Z, i.e. 
the average number per grain of real contacts between grains which plays a crucial 
role in the transmission of current forces in those arrays [2]. In addition, the definition 
and distinction between actual and near contacts is a delicate problem [3]. 

Packings of spheres provide rather convenient models for the study of real or 
theoretical granular media and their geometry is particularly well documented [4]. It 
is therefore a privileged system for seeing how the coordination number can be extracted 
from random cuts by planes ( 2 ~ )  or lines ( I D ) .  However, even in the case of packings 
made of monosize spheres, where the geometry of the grain is simple, theoretical 
predictions as well as experimental results on Z vary according to the particular 
determination used [ 5 ] .  A few years ago, Pomeau and Serra [6] derived the average 
number n, of real contacts per unit volume from the limit behaviour of the distribution 
function of the closest distances between the disc cuts obtained in a plane section. 
Chermant er al [7] have developed an experimental program on the basis of this 
approach and have applied it to regular dense packings where the theoretical value 
of n, is known exactly. 

More recently, Elizabeth Gardner, in a short letter to Journal de Physique [8], 
proposed that the information given by a random line drawn through the medium 
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would provide a simpler answer to the coordination number problem than the previous 
solution of Pomeau and Serra. Her method involved the distribution function of the 
distance between two consecutive intercepts of spheres in contact that we will call a 
true separator in the following. She also extended her analysis to a general distribution 
of polydisperse spheres. She finally proposed that the analysis might be extended to 
more general classes of objects. 

We have recently revisited Gardner’s calculation by a different method and, apart 
from a numerical factor, recovered her result [9]. We have also calculated the distribu- 
tion function for true separators, which is a universal function up to a multiplicative 
constant which is merely equal to n,R2 and which can be derived from the slope of 
the curve at the origin. We have also validated her approach on numerical packings 
of spheres of equal radius. Further extensions involving the radial correlation function 
to non-touching particles can be investigated; we shall consider briefly this aspect only 
in the last section. 

This paper is devoted to the numerical part of our study. Theoretical calculations 
may be found in our previous paper [9] and will be omitted. In 0 2, we recall the 
Pomeau and Serra approach and present our analysis following that of Gardner. In 
§ 3, we extend our presentation of the numerical study of ordered and disordered 
packings of spheres and check the universality of the distribution function. The 
difference between the theoretical and stereological analysis is stressed. In the last 
section, we compare the I D  and 2~ approaches and we discuss openings of Gardner’s 
work. 

2. Theoretical approaches 

Let us first recall here the ZD stereological approach to the coordination number given 
by Pomeau and Serra before presenting our approach following Gardner’s original 
idea. A comparison will be made in the last section. The complete calculation of the 
distribution function for the true separators may be found in our previous paper [9]. 

2.1. Planar sections 

In planar sections, assemblies of spheres in contact are represented by assemblies of 
non-touching discs of various radii whose centres are the projections of the centres of 
the spheres and whose radii r, are the projected lengths of the radii R of spheres i 
(figure 1); the line which joins the centres of the projections of two discs defines the 
smallest distance pv between the discs (figure 2( a) ) .  

The calculation of the average number of real contacts relies on the statement that 
when the minimum distance between two circular sections is small, it corresponds to 
two spheres in contact; this is rigorously true for ordered packings, as the distance 
between spheres takes fixed values and that, below a minimum gap value, two spheres 
have to be in contact. It is only a limit law for disordered packings as the distance 
between spheres varies continuously. 

For monosize spheres of radius R, the average number per unit area of neighbouring 
discs with closest distance smaller than p is given by 

for small p. I t  is then relatively easy to get function F ( p )  for any p through image 
analysis and to extrapolate it at the origin. The coordination number Z is related to 
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Metallographic plane 

Figure 1. View of a 2D cut of a biparticle of two spheres. 

n, through 

nc _ - _  
2 - n, 

where n, is the average number of spheres per unit volume. Formula (1) has been 
checked experimentally on a face-centred cubic array [7] and  has given, with good 
accuracy, the expected value n c = 3 / ( 2 f i R 3 ) .  The complete function F ( p )  is an  
increasing function of p which saturates for large p. Its analytic expression is not 
known (the Pomeau and  Serra calculation explicitly stated that the distance p is small) 
though some results seem to have been implicitly assumed by Chermant et a1 [7]. 

Actually, when p 5 2 R ( f i -  l),  the count given by F (  p )  includes second-nearest 
neighbours as it is not possible to separate sections coming from touching and  non- 
touching spheres with image analysis. One  may ask whether other information may 
be obtained from F ( p ) ,  especially for non-touching spheres. It is expected that the 
radial (or the pair) distribution function then plays an  important role [lo]. 

2.2. Line intersections 

The idea of this treatment is to consider the intersection of a random line with the 
spheres of the packing. A line which crosses one sphere determines, within the sphere, 
a chord which is called an  ‘intercept’. The distance between two intercepts on the line 
is called a ‘separator’ (figure 2 ( b ) ) ;  when spheres are in contact, the separator is called 
a ‘true separator’. 

It is possible to get the number of separators per unit line smaller than a given 
value w by the same kind of analysis as above. Let N L ( w )  (L  stands for line) denote 
the corresponding function. For small w,  it coincides with the number N t ( w )  of true 
separators smaller than w as, again, small separators arise from touching spheres. We 
have obviously N L ( w )  3 N t ( w ) .  However, unlike the situation of 0 2.1, the complete 
calculation of N : ( w )  has been performed [9]. A main feature is its universality: the 
reduced function N t ( u ) / ( n , R 2 )  is found to be a unique function of the reduced 
variable U = w / 2 R .  It is plotted in figure 3 for O <  U < 1 (full curve). 
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Figure 2. ( a )  Measurement of p in a planar section; ( 6 )  Intersection of a biparticle by a line. 

The behaviour of N:(u) is, in the limit where U goes to zero: 

(3) 
271. 

3 
N f (  U )  - n,R2u. 

n, and, consequently, the coordination number 2 can be obtained from the slope at 
the origin of this law. In the other limit U = 1,  N f (  U )  saturates to its maximum value 
as the largest true separator is 2 R .  

If a dense packing of monodisperse hard spheres is regarded as a packing of 
biparticles in contact with a volume density equal to n, we can calculate the value 
N f (  U = 1) from the geometrical problem of a single biparticle crossed by random lines. 
We have found 
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Figure 3. Plot of the reduced function N : ( u ) / ( R 2 n , )  against U. The full curve represents 
the theoretical curve and the four kinds of symbols the normalised distribution functions 
for the four ordered 3D packings (SC, BCC, FCC and HCP). 

Unfortunately, the above hypothesis is not directly applicable to a stereological 
study (see § 3.3), and the experimental values obtained on any packings (ordered or 
not) will be lower than those given by relation (4). 

As a by-product, let us recall the following classical stereology result. The number 
of separators per unit length is related to n, ,  the number of spheres per unit volume, 
by N L =  nn,R*. But the ratio 

NZ(u = 1) 

NI. 

must be smaller than 1. We deduce an upper bound of the coordination number 

which is not far from the values 13.56 and 13.40 obtained by Coxeter [ 111 and Dodds 
[121. 

3. Numerical simulations 

We checked the validity of our calculations on simulated ordered (SC, BCC, FCC or 
HCP) and disordered packings of equal spheres. Technical details are given in [ 9 ] .  

3.1. Ordered packings 

We have performed numerical simulations on finite cubic samples with size from 
10 x 10 x 10 up to 40 x 40 x 40 and a number of lines from 20 up to 600 to estimate the 
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range of values needed to obtain a good accuracy of the slope of NL(u).  We present 
results on 20 x 20 x 20 numerical packings. In order to compensate for this limited size 
and for the effect of ordering of the packings and to obtain smoothly shaped distribution 
functions, 300 lines were thrown through the packings. The slope at the origin was 
calculated by a linear regression with the constraint that the resulting line passes 
through the origin. This calculation was carried on with values of U up to 0.04. For 
each type of ordered packing, ten simulations were computed in order to average the 
ten corresponding slopes. The values of n ,  derived from these mean values coincide 
with the known exact values with an error lower than 4%. 

As numerical packings enable us to check whether two spheres are in contact or 
not, we may obtain the full normalised function N f (  U)/( n,R*).  The resulting function 
is to be compared with the theoretical one [9] (see figure 3 ) .  The agreement is excellent 
up to an upper limit on U which will be given in § 3.3. It does not depend on the 
lattice under consideration. As noticed in § 2.2, systematic differences between the 
experimental curves and the theoretical one must be again pointed out and are explained 
in § 3.3. 

3.2. Disordered packings 

We used numerical 3~ packings constructed with the Powell algorithm [ 131. We created 
several packings (from 1000 up to 3000 spheres) inside cubes varying from 10 to 1 5  
times the sphere diameter. The packing fraction fluctuates between 0.590 and 0.605 
which can be compared with the real packing fraction of a monosize packing made 
of glass beads (around 0.62). We have thrown 300 lines through these packings to get 
a satisfactory statistical account. 

From this numerical experiment we get a value of n, equal to 0.427 * 0.025 which 
is to be compared with the exact one 0.429 obtained from the previously calculated 
density; the mean coordination number, given by (2) is Z = 6.1 * 0.3. Universality of 
the function N : (  U )  may again be checked starting from the normalised function. 

We have plotted on figure 4 the complete function NL( U )  for all separators together 
with N t (  U); we see directly that they have a common slope at the origin, which justifies 
a posteriori the method for determining n,. They separate rapidly and NL(u)  keeps 
growing while Nf(u)  reaches a limit value much sooner. 

Let us point out that it is not possible to distinguish experimentally on a planar or 
a linear section between distances corresponding to touching spheres and those which 
are not in contact. Thus, we cannot analyse separately at the same time contact and 
non-contact functions such as N:(  U )  and NL( U )  in the present case (or F*( p )  and 
F (  p )  in the previous analysis). Practically, only N L ( u )  and F (  p )  are relevant in a 
stereological experiment. 

3.3. Theoretical and stereological functions 

I t  is important to emphasise the difference between the theoretical and the experimental 
approach. 

The theoretical calculation, as stated above, considers only biparticles, indepen- 
dently of other surrounding spheres. Then, any pair of spheres is considered and the 
distribution law for U is given only by the probability of a line being a separator for 
the biparticle. 
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Figure 4. Distributions N t ( u )  and NL( U )  obtained from disordered packings of monosize 
spheres. The curves have the same slope at the origin, equal to 0.427*0.025. 

U 

The stereological approach takes into account the environment of a biparticle. It 
strives to describe the pore space as it considers only separators without any interference 
with a third particle. A fraction of the configurations which are considered in the 
theoretical calculation are then omitted as seen in the limit configuration shown in 
figure 5 .  Thus, we have NL( u)StereoS NL( u ) ~ ~ ~ ~ ~ .  

The two values coincide only for U < uo = (1 - J2& - 3) = 0.318; beyond this value, 
they separate. The discrepancy is very important in the long-range limit as the counting 
in NL( u ) ~ ~ ~ ~ ~ ~  slows down for large U :  two spheres which are far apart are nearly always 
separated by a third one. Similarly, for the contact functions, we have Nt(u)StereoS 
N t (  U ) t h e o r .  

1 Separators I 
L i m i t  case 

Figure 5. Limit case where stereological and theoretical NL(u) coincide. The linear cut is 
in the plane of the three centres and is tangent to the upper circular section. 
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Figure 6. Plot of the four reduced distribution functions on the line N t ( u ) / N ,  and 
NL( U)/ NL obtained 'theoretically' and stereologically. 

We have plotted in figure 6 the four distribution functions related to the line analysis 
in the case of a numerical disordered packing [14]. Nt(u)'heor and Nt(u)Stereo are 
not very different as configurations where true separators are omitted are relatively 
rare. On the other hand, NL(~)fheor and NL(~)Sfereo very rapidly differ as expected (in 
the case of regular packings, the differences between NL(~)'heor and NL(~)stereo give 
the relative position of the second and third neighbours). 

4. Discussion 

We have presented in this paper a I D  method for estimating the coordination number 
of a monosize packing of spheres from the limit behaviour of the distribution functions 
N r (  U )  or N,( U )  per unit line as the length of the separator goes to zero. The distribution 
function N t (  U )  can be written explicitly, provided homogeneity and isotropy condi- 
tions are fulfilled. It is universal and its expression has been tested both on ordered 
and disordered numerical packings. The difference between the biparticle and the 
stereological approaches has been emphasised. The discussion may be extended to 
binary mixtures, to assemblies of spheres with size distribution, and to 'soft' contacts, 
which is a first step towards slightly sintered grains. This will be done in the last 
section. A more complete presentation will be given in a forthcoming paper [ 141. 

4.1. Possible experiments 

The method proposed by Gardner does not look technically very far from that of 
Pomeau and Serra as both analyses can be made on a random cut of the packing. One 
difference is that, in the case of a linear analysis, the full function N f ( u )  is known; 
we do not have a corresponding calculation for F*( p )  which is the part of the function 
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F ( p )  which only retains the values of p when the spheres are in contact. There is 
another large difference which comes in the treatment of experimental packings: in 
the Pomeau-Serra approach, several cuts are needed in order to obtain a large enough 
number of couples of discs in order to minimise the error on the slope of F ( p )  [ 7 ] ;  
in Gardner’s approach we use more fully the information on the relative position of 
one sphere with respect to the others by throwing a large number of lines, even in a 
single ZD cut [14]. 

An experimental study of the problem has been undertaken and will be presented 
separately. Let us mention the condition of the experiment. We create packings of 
spheres with well known procedures which lead to a global homogeneity. Then, sections 
are obtained in the following way: the pore space is filled first under vacuum with a 
low viscosity coloured epoxy resin in order to obtain a compact solid block. Plane 
random cuts are made through the block and  polished. They are studied by image 
analysis, pixel after pixel (512 x 512 pixels are necessary). In more recent experiments 
carried out with J L Bouillot, we have scanned the surface by parallel equidistant lines 
using an image analysis technique which determine the precise location of the points 
where the light intensity changes. We use an  algorithm initially developed [15]  for 
the study of spheres located in a plane. The treatment leads to the reconstruction of 
the centre of the discs (or spheres in his case) from the intercept of at  least three lines 
intercepting a given circle in a plane. An example of such a treatment is given in figure 
7. Moreover, preliminary results on numerical packings have shown us that the I D  

study could also be performed by generating random lines within a large enough ZD 
cut only, or using parallel non-coplanar lines, with directions chosen at random, and  
distant by more than R d  in order to decorrelate the information between two 
neighbouring lines. 

This method of cutting is rather long and  destructive. Moreover it is not a direct 
experimental I D  study. One can imagine an  experiment with a laser beam passing 
through a three dimensional packing of beads filled with a fluorescent isoindex liquid 
as has been used for the study of multiple phase flows in porous media [ 161. This will 
give directly without damaging the packing, the position of the respective intercepts 
of the packing with the line and, therefore, the distribution law of the separators. 

4.2. Extensions of Gardner’s work 

In the spirit of the last section of Elizabeth Gardner’s letter, we consider some possible 
extensions beyond monodisperse arrays of spheres. 

4.2.1. Binary disperse case. Gardner’s treatment led to the full distribution of contacts 
in polydisperse arrays of objects in contact. We consider the simpler limit of a bidisperse 
random array of spheres of radii R I  and R 2  ( R I  < R 2 ) .  The study of such arrays is a 
well documented subject [17]: packings of binary spheres are often used as a model 
for more general-continuum distributions of spheres whose radii R verify the relation 
R I  < R < R 2 .  On the theoretical side, several approaches have been developed for the 
study of random binary alloys, such as the Percus-Yevick method. Geometrical 
treatments also exist: they lead to the determination of the packing fraction of spheres 
as well as to predictions concerning the fractions of contacts between spheres 1 and 
2 (respectively t i , ,  t I 2  and t2? such that t i l  + t I 2 +  tz2 = 1 )  [12]. On the experimental 
side, we have developed a technique which provides reasonably homogeneous and  
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Figure 7. Photography and analysis of a 2~ cut of a spheres packing made by the technique 
developed in Bouillot’s thesis. 

isotropic packings of spheres provided the ratio R 2 / R l  is sufficiently small to avoid 
macroscopic segregation of spheres (typically smaller than 4) [ 181. 

If we apply Gardner’s treatment to such distributions, we find 

T ( RI+& 
N z ( w ) = - n n , w  3 R l t l , +  2RlR2tl2 + R 2 t 2 4 .  

We recover the expected result (7r/3)nCRw, in the limit R I  = R 2 .  

4.2.2. Sintered monosize sphere packings. Another opening deals with overlapping 
spheres. Such a situation is met in several instances in materials science. 

Spheres having a hard core and soft shell are used to model microemulsions [19]. 
Toughness studies of polymers reinforced with hard spheres show that the presence 

of mechanical contacts between spheres is not needed to insure a continuous rigid 
path but that there exists a critical radius (larger than the sphere radius) where the 
continuum medium will resist shearing [20] .  
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Overlapping spheres are also used to model the sintering of spheres [21]. One 
starts from compact arrays and then dilates the spheres without changing the location 
of their centres. The excess material in  the overlapping regions is not taken into 
account. This description is not too far from reality as studied on slightly sintered 
glass bead packings (figure 8) .  

I 

I 

2 6  

~ - 6 i R  
Figure 8. View of a ‘theoretical’ sintering process. 

Pomeau and Serra [ 6 ]  have considered the extension of their calculation to this 
case. It leads in particular to a less singular distribution of minimum lines near a zero 
separation. We have also extended Gardner’s calculation to this case and found the 
following formula [ 141: 

2~ 1 - 4 7 + 2 7 *  AI:( U )  = - n ,  R 2 u  for small 7 
3 1 - 7  

with 7 = S /  R ,  S representing the overlapping part of one sphere. 

of hard spheres when 7 = 0: 
This leads indeed to the formula we obtained in the case of monodisperse packing 

2 T  9 

3 
AI:( U )  = - n,R‘u. 

4.2.3. Other possible extensions. It remains to see what can be done beyond the 
properties of contact to describe the immediate environment of spheres, i.e. what can 
be extracted from the knowledge of the complete distribution function. A similar 
problem has formally been solved starting from the ‘intercentres’ of the sections. 
However, an unresolved problem remains which may be raised in some cases [lo]. In 
a first step, it seems easier to consider the biparticle approach, as all pairs may be 
taken easily into account in the image analysis procedure by suitable changes of the 
studied area. It is relatively easy to extend the calculation done in the case of touching 
spheres to all kinds of biparticles. One main objective which we are currently pursuing 
is to determine g,( r ) ,  the two-point correlation function in 3~ space, by inverting-at 
least numerically-the I D - ~ D  equation. 
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The final paragraph of Elizabeth Gardner’s letter is the most provoking one. It 
raises the possibility that her approach might be used to describe the distribution of 
contacts for general packings which was the starting point of the present paper. To 
the best of our knowledge there has been no stereological work done on this subject. 
However in the spirit of the current issue we would like to propose some paths to 
extend Elizabeth Gardner’s thoughts. Can we think of using some particular geometries 
of objects which would best mimic general random packings? 

Obviously, the polydispersity in the distribution of spheres provides an insufficient 
step and  merely generalises the monodisperse results. 

Ellipsoids of known geometries could be used in some limit cases (small o r  large 
ellipticity) instead of spheres to mimic randomly shaped grains. In  such a case, it will 
be easy to come back from the Z D  cuts to a 3~ reconstruction and one can think of a 
brute-force solution for calculating the number of contacts. The problem is likely to 
be overdetermined as in case of spheres [22]. However this approach would take us 
away from the original approach of Elizabeth Gardner. In addition, problems of 
packings of ellipsoids (at the limit cylinders) are far more complex than those of 
spheres mainly because of the orientational degrees of freedom. 

It may turn out that the simplest system to deal with would be a distribution of 
regular, randomly shaped conkex objects (potato type) with a given range of size. It 
is well known from integral geometry that the problems of coating and  local environ- 
ment of objects are much simpler if such a convexity property applies, which is often 
the case in nature. Thanks to this randomness we would not have orientational order. 
The interest of such a distribution is that a random cut by a plane or  a line of two 
touching objects will be characterised by smooth convex curves which-as an average 
over many objects-can mimic the planar circular arc next to the point of minimum 
separation in the cut of a sphere. It would be tempting to apply directly the Gardner 
or  Pomeau-Serra treatments to such assemblies and, on the other hand, t o  check the 
real number of contacts of the three-dimensional objects. This can be done by several 
techniques which have been developed for this purpose such as looking for print points 
left on the contacts due to the applied pressure, o r  a deposit left when a solution which 
has stayed in the medium for a while and washed away. 

As stated early in this paper, the practical importance of such a study is to achieve 
a better grasp of the transport properties in electrical [2] as well as mechanical [3] 
granular arrays. Another problem is the formation of ceramics or sintered materials 
in which the initial steps in the process (formation of a paste or  packing) play a 
dominant role for the final material. Some theoretical studies [23] have recently 
considered this problem. These approaches clearly indicate that the heterogeneity in 
the location as well as in the quality of contacts is an  important factor to be taken 
into account which is a problem beyond the present statistical evaluation. 
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